Creating a Semantic Academic Lecture Video Search Engine via Enrichment Textual and Temporal Features of Subtitled YouTube EDU Media Fragments

نویسندگان

  • Babak Farhadi
  • W. Jochum
  • R. King
  • C. Sadilek
چکیده

In this paper, we propose a new framework to annotating subtitled YouTube EDU media fragments using textual features such as exert all the basic portions extracted from the web-based natural language processors of in relation to subtitles and temporal features such as duration of the media fragments where proper entities are spotted. We've created the SY-E-MFSE (Subtitled YouTube EDU Media Fragment Search Engine) as a framework to cruising on the subtitled YouTube EDU videos resident in the Linked Open Data (LOD) cloud. For realizing this purpose, we propose Unifier Module of Outcomes of Web-Based Natural Language Processors (UM-OWNLP) for extracting the essential portions of the 10 NLP tools that are based on the web, from subtitles associated to YouTube videos in order to generate media fragments annotated with resources from the LOD cloud. Then, we propone Unifier Module of Outcomes of Web-Based Named Entity (NE) Booster Processors (UM-OWNEBP) containing the six web Application Programming Interfaces (API) to boost outcomes of NEs obtained from UM-OWNLP. We've presented 'UM-OWNLP ontology' to support all the 10 NLP web-based tools ontological features and representing them in a steadfast framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Creating Enriched YouTube Media Fragments With NERD Using Timed-Text

This demo enables the automatic creation of semantically annotated YouTube media fragments. A video is first ingested in the Synote system and a new method enables to retrieve its associated subtitles or closed captions. Next, NERD is used to extract named entities from the transcripts which are then temporally aligned with the video. The entities are disambiguated in the LOD cloud and a user i...

متن کامل

Enhancing Web intelligence with the content of online video fragments

This demo will show work to enhance a Web intelligence platform which crawls and analyses online news and social media content about climate change topics to uncover sentiment and opinions around those topics over time to also incorporate the content within non-textual media, in our case YouTube videos. YouTube contains a lot of organisational and individual opinion about climate change which c...

متن کامل

The Role of Taxonomies in Social Media and the Semantic Web for Health Education

Background: An increasing amount of health education resources for patients and professionals are distributed via social media channels. For example, thousands of health education videos are disseminated via YouTube. Often, tags are assigned by the disseminator. However, the lack of use of standardized terminologies in those tags and the presence of misleading videos make it particularly hard t...

متن کامل

Towards Boosting Video Popularity via Tag Selection

Video content abounds on the Web. Although viewers may reach items via referrals, a large portion of the audience comes from keywordbased search. Consequently, the textual features of multimedia content (e.g., title, description, tags) will directly impact the view count of a particular item, and ultimately the advertisement-generated revenue. This study makes progress on the problem of automat...

متن کامل

Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud

The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and “infotainment”. Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014